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The early-time evolution of plasmas moving across a background magnetic field is addressed 
with a two-dimensional model in which a plasma cloud is assumed to have formed 
instantaneously with a velocity,.across a uniform background magnetic field and with a 
Gaussian density profile in the two dimensions perpendicular to the direction of motion. 
This model treats both the dynamics associated with the formation of a polarization field and 
the generation and propagation of electromagnetic waves. In general, the results indicate 
that, to zeroth order, the plasma cloud behaves like a large dipole antenna oriented in the 
direction of the polarization field which oscillates at frequencies defined by the normal 
mode of the system. The magnitude of the radiation field and the amount of plasma momentum 
and energy carried away by and stored instantaneously in the fields are discussed only 
qualitatively in this paper, quantitative results for specific cloud parameters and scaling laws 
for the magnitude of the fields and the slowing down of the plasma cloud are presented 
in a companion manuscript. 

I. INTRODUCTION 

Examples of plasmas moving across magnetic fields 
can be found in laboratory experiments, active experiments 
in space, numerical simulations, and natural phenomena 
occurring in space plasmas and astrophysical plasmas. The 
expansion and convection of the energetic plasmas pro- 
duced by high-altitude nuclear explosions ( HANE’s ) , ’ the 
motion of plasma clouds released in the ionosphere and 
magnetosphere across the geomagnetic field, the ionized 
portion of rocket exhausts in the space environment, the 
orbital motion of plasmas produced by volcanic activity on 
the satellites of planets through the planetary magnetic 
fields (e.g., Io-Jupiter and Titan-Saturn systems), the 
eruption of magnetic loops and prominences in the solar 
corona, the motion of coronal ejecta through the solar 
magnetic field, the solar wind, the formation of aurora1 
arcs, and the motion of galactic jets through the interga- 
lactic magnetic field represent only a small subset of such 
phenomena. In addition, energetic plasmas that convect 
across an applied magnetic field are often produced in the 
laboratory by irradiating targets with intense laser pulses. 
These laser-produced plasmas can simulate conditions 
found in high-altitude nuclear explosions as well as less 
energetic phenomena associated with active experiments in 
space. The magnetic confinement of plasmas in fusion de- 
vices also often involves the cross-field motion of energetic 
plasmas. 

The problem of modeling plasmas moving across mag- 
netic field lines can be formulated in terms of five basic 
stages of evolution; namely, ( 1) plasma production, (2) 
plasma polarization and microscopic dynamics, (3) cross- 
field motion, (4) coupling to the background plasma and 

magnetic field, and (5) late-time plasma cloud dynamics. 
While the physical processes inherent to these various 
stages overlap in time, this partitioning provides an initial 
framework from which the intrinsic dynamical and mor- 
phological properties of cross-field plasma motion can be 
studied.‘Although many aspects of this problem have been 
addressed to varying degrees, no comprehensive model ex- 
ists and indeed the transition from the early-time micro- 
scopic dynamics [encompassing stages (l)-(3)] to the 
late-time macroscopic evolution of the plasma [encompass- 
ing stages (3)-(5)] is poorly understood. In particular, 
while the radiative properties of the plasma have been 
characterized for time scales long compared to an ion gy- 
roperiod (e.g., the AlfvCn-wing model), the high- 
frequency, short-wavelength electromagnetic radiation 
emitted during the initial phases of polarization and the 
formation of charge layers has not been studied. 

The late-time (t> 100 ion gyroperiods) plasma cloud 
dynamics and coupling to the background plasma and geo- 
magnetic fields are subjects that have received considerable 
attention over the last two decades.24 The well-known 
AlfvCn-wing model describes the cross-field motion and 
coupling to the background plasma and magnetic field and 
has been applied successfully to several phenomena in the 
solar system, including barium-cloud dynamics,33’P6 Io- 
Jupiter coupling,7’8 auroral-arc formation,“” and 
magnetospheric-ionospheric coupling.4’” In contrast, the 
early-time (t< 100 ion gyroperiods) dynamics has been 
investigated numerically only recently with both 
particle’>I8 and hybrid” simulations (references therein). 
One of the inherent limitations of these electro- 
static/electromagnetic numerical methods is their inability 
to manage large spatial and temporal domains. The neces- 
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sity to resolve the individual particle motion over spatial 
scales less than a Debye length/ion gyroradius and times 
less than a plasma period/gyroperiod severely limits the 
spatial dimension and temporal extent that can be mod- 
eled. In addition, the density gradients are intrinsically 
large and can dominate the plasma dynamics observed in 
these simulations. A recent pape?’ describes two- 
dimensional hybrid simulations of ion beam propagation in 
a magnetoplasma. The evolution of beam density profiles is 
studied in the limit of high, dynamic plasma beta for beam 
dimensions much larger than an ion gyroradius, however, 
electron inertial effects are ignored and the early-time for- 
mation of the polarization field and the concomitant radi- 
ation field is not examined. A similar comment can be 
made regarding the large Larmor radius model developed 
by Hassam and Huba” and applied by Huba et aZ.22 to the 
study of Rayleigh-Taylor-type instabilities that, in their 
opinion, describes the structure observed in the AMPTE 
magnetotail releases. Magnetohydrodynamic (MHD) cal- 
culations of cloud dynamics’f3*5*6 can alleviate some of the 
spatial and temporal restrictions imposed by parti- 
cle/hybrid simulations, however, the low-frequency ap- 
proximation does not allow for the evaluation of the early- 
time electrostatic and radiation dynamics. An intermediate 
fully electromagnetic model is needed to bridge the gap 
between the early-time particle simulations and the late- 
time MHD calculations. 

In this paper, a two-dimensional analytic solution of 
the coupled fluid and Maxwell’s equations that allows for 
the description of the early-time dynamics associated with 
the formation of the polarization field and subsequent elec- 
tromagnetic radiation is developed. A Fourier trar&form 
taken in one spatial dimension and a Laplace transform of 
these equations yield a set of integrodifferential equations 
for the electromagnetic fields. This set of equations is 
solved analytically and an inverse Laplace transform is 
then performed numerically. With this treatment it is pos- 
sible to address the large spatial and temporal dimensions 
inherent to astrophysical and space plasmas, however, the 
nonlinear dynamics and large gradients associated with 
some laboratory experiments are not modeled. The early- 
time development of the polarization fields and the subse- 
quent electromagnetic radiation are observed and the tran- 
sition from early to late times is obtained. 

This paper is intended to be the first in a series and will 
address only the method of analysis and a zeroth-order 
analytic solution. A second companion paper (Paper II) 
describes the results for a particular parameter regime in 
some detail. In Paper II, we demonstrate quantitatively 
that, in the presence of radiation damping, the polarization 
field does not achieve a steady-state value and that the 
radiation field can carry away a substantial amount of the 
plasma cloud’s momentum and kinetic energy on time 
scales of the order of the ion gyroperiod, depending on the 
plasma dimensions. The radiation spectrum obtained in 
Paper II consists of a burst of chirped, high-frequency (in 
the range of the cloud plasma frequencies) waves, followed 
by a pulse of whistler waves, and subsequently by ion cy- 
clotron emission. Scaling laws are derived for the plasma 

momentum and energy loss rates and predictions for the 
braking time, the amplitude and spectrum of the radiation 
field, and the total radiated power are presented for con- 
ditions relevant to the recent CRRES chemical release ex- 
periments performed in the magnetosphere. Subsequent 
papers will incorporate additional complexity in the model 
including the effects of a background plasma and momen- 
tum and energy source terms. As suggested above, the 
method of analysis described in this paper can potentially 
be applied to many problems in space physics and astro- 
physics. In the case of active experiments, we are particu- 
larly interested in studying the overall braking of plasma 
clouds resulting from the momentum that is radiated away 
and the differential braking of the clouds that leads to a 
shearing off of charge layers and to the corresponding de- 
velopment of plasma density structures on a macroscopic 
scale. In addition, the spectral signature and magnitude of 
the radiated fields are potential diagnostics for remote sens- 
ing of plasmoids released in the Earth’s atmosphere at high 
altitudes. 

We begin in Sec. II of this paper with the development 
of our working set of equations. The fluid equations are 
linearized and the spatial and temporal ordering of the 
theory is discussed. Constitutive relations for the plasma 
currents are obtained from a Laplace transform of the fluid 
equations. Maxwell’s equations are Fourier transformed in 
one spatial dimension, a Laplace transform is performed, 
and the constitutive relations are incorporated to yield a set 
of coupled integrodifferential equations for the electromag- 
netic fields. The equations for the conservation of field and 
plasma momentum and energy are developed and are lin- 
earized. In Sec. III, the general solution is obtained and the 
normal modes of the system are discussed, while in Sec. IV, 
we summarize the results. 
II. THEORY 

The primary goal of this analysis is to quantify the 
early-time ( < 100 ion gyroperiods) radiative properties of 
a plasma moving across a background magnetic field. In 
our model, the plasma is composed of electrons of mass m, 
and charge qe and ions of mass mf and charge qti As a first 
step, we choose to simplify the treatment of the plasma 
while retaining as much detail as possible in the mathemat- 
ical model adopted for the generation and propagation of 
electromagnetic waves. Thus the electrons (ions) are as- 
sumed to have a Maxwellian velocity distribution function 
characterized, in general, by a density, n,( n,), mean veloc- 
ity, V,(vi), and temperature T,( T&. The geometry and 
initial conditions adopted for this problem are shown in 
Fig. 1. The plasma is assumed to be quasineutral and to 
have formed instantaneously with a velocity Ve in the y 
direction across a uniform background magnetic field with 
magnitude B. in the z direction. The VoXBo component of 
the Lorentz force causes the plasma to polarize in the x 
direction, resulting in a polarization field as shown in Fig. 
1. The initial plasma density profile is taken to be Gaussian 
in the x and z directions with l/e half-widths of D and d, 
respectively, and a peak density in the center of the cloud 
of magnitude nc, In the y direction, the plasma is assumed 
to be infinite in extent. As a result, no E,, polarization field 
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lNITIAI CONDITM 

Electron Density: ne (t=O,x,r) = n0 e xz/Dze - z’k4z 

Ion Density: ni (t=O,X,Z) = ne (t=O,XJ) 

Electron Velocity: ye (k0) = vo P 

Ion Velocity: yi (key 3 y$ (k0) 

Electron Temperature: Te = 0 

Ion Temperature: Ti = 0 

Electric Field: E (k0) I 0 

Magnetic Field: B (t=O) = BO 2 

FIG. 1. The geometry adopted for this problem is shown in the top panel. 
The plasma cloud is assumed to be infinite in they direction and to have 
formed instantaneously with a velocity Vc across a uniform magnetic 
field, B,, in the z dir&ion. A polarization field forms initially predomi- 
nantly in the x direction as shown. The initial conditions are listed in the 
bottom panel. Note that the initial plasma density profile is Gaussian in 
both x and z. 

can develop and only inductive fields exist in this direction. 
The fluid equations needed to quantify the subsequent 

evolution of the plasma are presented in Sec. II A. These 
equations are coupled to Maxwell’s equations, given in Sec. 
II B, through the plasma currents. The constitutive rela- 
tions obtained from the fluid equations are used to derive a 
single set of equations for the electromagnetic fields. Fur- 
ther approximations appropriate for the short temporal 
and large spatial scales of interest are discussed below. The 
exchange of momentum and energy between the plasma 
and the electromagnetic fields is treated in Sec. II C. 
A. Fluid equations of motion 

The fluid equations for a Maxwellian plasma are given 
by 

a 
Ftn,+v*njvj=R, 

- c njmjvjk(vj-Vk) +mjRVp 

k 

(2) 

where the subscript j refers to the jth particle species 
(electrons or ions), the subscript k includes a background 
plasma and neutral particles, R is the rate per unit volume 
at which plasma is produced (e.g., by photoionization of 
neutrals), np vJ and Uj are the jth particle density, mean 
velocity, and thermal energy density, respectively, pj is the 
jth particle partial pressure, vjk iS the COltiSiOn freqUenCy 
between jth and kth particle species, qi(E+vjXB/c) is 
the Lorentz force associated with self-consistent electric 
(E) and magnetic (B) fields, and we have allowed for the 
production of particle momentum (mjRvjo) and thermal 
energy (Rue) . For a Maxwellian velocity distribution func- 
tion, the jth particle partial pressure and thermal energy 
density are defined as njk,Tj and 3njkBTj/2, with Tj 
equal to a temperature and kB equal to Boltzmann’s con- 
stant. 

In order to identify the dominant terms in these equa- 
tions for the temporal and spatial scales of interest, we 
introduce the following scaling parameters: 

L=spatial dimension of the plasma ( =d or 0) , 
Vo=initial plasma velocity across the background 

magnetic field, 
B. = background magnetic field strength, 
E. = VoBe/c, the polarization electric field necessary to 

allow the plasma to drift across the ambient mag- 
netic field, 

r=rn,c/qiB,-,, an ion gyroperiod, 
no= the initial plasma density in the center of the 

cloud, 
Wjo=nomJV~2, the initial kinetic energy density of 

the jth particle species. 
Normalizing the spatial coordinate, plasma velocities, 

magnetic field, electric field, temporal coordinate, plasma 
densities, and jth particle pressure and thermal energy to 
the above quantities, respectively, yields the following non- 
dimensional equations: 

a Pi -,n,+,V*njvj=rR, 

( $+F(vj*V))vj=TOj( E+q) -$$ VPj 

-r T vjk(vj-Vk) 

(5) 
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a=.-+, c&3 0 

” 0 

~Tj+~(vj’v)~j=-~~Tjv*vj-~~vjk 
k 

X (Tj-Tk)+rR(To-Tj)t 

(6) 

where we have adopted the notation in Eq. ( 1) through 
Eq. (3) for the nondimensional variables, pi is an ion gy- 
roradius ( = Vow) and fij is the jth particle gyrofrequency. 
Note that the spatial derivatives have a scaling given by the 
ratio of the ion gyroradius to the overall dimension of the 
plasma and that the collisional interaction and production 
terms scale as the rate divided by the ion gyrofrequency. 
As a first approximation, we will assume that pi/L(l, 
rR ( 1, and vjkr4 1, yielding the simplified set of fluid equa- 
tions given by, 

iVj=TfLj( E+F), 

& Tj=O* 

(8) 

Thus, for large-scale plasmas, the dynamics of cross-field 
plasma motion is dominated by the interaction of the ra- 
diation field with the plasma via the Lorentz force. If we 
further assume that the induced magnetic fields are small 
in magnitude compared to the background magnetic field, 
it is possible to linearize the momentum equation [Pq. (S)] 
with the result 

(10) 

where we have reverted back to the dimensional form of 
the equations. This approximation is valid in the non- 
relativistic limit and, provided that the initial plasma ki- 
netic energy density is small, compared to the background 
magnetic field energy density [i.e., 
P=4r(ndne+nimi) VgBi( 11. If the latter condition were 
not met, than the plasma would be able to create large 
corrections to the ambient field as is obtained in the for- 
mation of diamagnetic cavities. 

The constitutive relations for the plasma currents can 
be derived by taking the Laplace transform of Pq. ( 10) for 
the electrons and ions and combining the resulting equa- 
tions with the expression for the current 
(J= ngivi+ ndeve) with the result 

UP VoBo OH VoBo 
S=o*E+y~n-y,-v^, (11) 

where s is the Laplace transform variable, c is a tensor 
given by 

and opt ffn, andoll are defined as 

n&=0)6? s %  %e ap= - 
me %e ( (2+&) + (2+&) 1 ’ 

(131 

n,(t=O)2 1 
flH= - 

me %e 
(141 

fZ,(t=O)2 (l+mJmi) 
?I = me s ’ (15) 

where oCi, w, equal to the ion and electron gyrofrequen- 
ties, respectively. Equation ( 12) is the inertial equivalent 
of the conductivity tensor found in collision-dominated 
transport theory. The quantities or, au, and ~11 corre- 
spond to the Pedersen, Hall, and parallel conductivities 
derived for a plasma in a magnetic field with the inertial 
parameter s (the Laplace transform variable) replacing the 
usual collision rate. Equation ( 11) for the currents is in 
dimensional form and contains terms proportional to 
V,Bdc. As the plasma attempts to move across the mag- 
netic Geld, inertial separation of the electrons and ions oc- 
curs and produces an oscillating polarization electric field. 
The corresponding oscillating currents represented by the 
two terms proportional to V&,/c in I$. ( 11) enter Max- 
well’s equations as source terms that drive the production 
of electromagnetic radiation. 

B. Maxwell’s equations 

The self-consistent evolution of the electromagnetic 
fields is obtained from Maxwell’s equations, which can be 
combined to yield a single-vector equation for the electric 
fields; namely, 

aJ 
-c2V2Etc+(V*E) = -4~~ (16) 

G iven that the plasma is infinite in the y direction (d/dy 
=O) and taking the Laplace transform and Fourier trans- 
form in X, Fq. (16) can be written 

(171 
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d2iik 
($+c~k$+~--&L -47r@, , 

plasma is negligible, and that the rate of momentum and 
(18) energy production can be neglected over the short time 

. scales of interest, it is evident that the total momentum and 

dsi? 
energy stored in the electromagnetic fields and the jetting 

(?+c2k2)E-ikc2 $= -47~~2. (19) plasma over all space must remain constant for all time. 
Thus momentum and energy are exchanged with time be- 

Performing the same transforms on the vector components tween the plasma and the fields, as defined quantitatively 
of Faraday’s equation yields by the equations 

dik 
s&c 2, 

dz 

szt= - ikcg, 

&(P+P+-V*Pv+V*M, 

(21) &(w+w+=-V*w+V*S, 

where k is the x-Fourier transform variable, where the 
superscript k-designates a Fourier transform, and where we 
have taken the initial value and initial temporal derivative 
equal to zero for all field quantities over all space. The 
transformed currents involve a convolution between the 
initial density profiles and the electric fields, given by 

nk VoBo * &’ &k’Ek’+ q, _ - x s c 

j’ (23) . . 

where B represents normalized’ cbnductivities, [P; = a/n ( t 
=O,x,z)] and ‘nk(z) is the Fourier transform of the initial. 
plasma density; namely, __ 

nk(z) = fiDe-“d2noe-Po2’4.. 

Equsltions (17)-( 19) together with Eq. (23). form a cou- 
plet set of integrodifferential equations in k and z for the 
three electric field components. The magnetic field compo- 
nents are found from Eqs. (20).-( 22)’ given a solution for 
the electric fields while the plasma velocities can be derived 
from the constitutive relations. The plasma density~ is con- 
stant in time to zeroth order in the parameter pi/L. How- 
ever, it is possible to compute the magnitude of the density 
perturbations associated with the formation of charge lay- 
ers from a linearization of Eq. (4), including the spatial 
derivative term; namely, 

(26) 

(27) ( 

where P ( =nirnivi+np,v,) is the momentum density in 
the pldma, Pf ( =EXB/4rc) is the momentum density 
stored in the fields, v[=(np~~+np~,v,)/(n~+n,)] is the 
mean velocity of the plasma, Mad= [E,EB+ B,Bp 
- (@B2Ma~2]/4~} is the Maxwell stress tensor, w 
( =nirntp~/2+n$neu~/2) is the plasma kinetic energy den- 
sity, -&A= (E’+ B2)/8?r] is the wave energy density, and 
S[=c(EXB)/4?r] is the Poynting flux. In nondimensional _.> _ 
form, Eqs. (26) and (27) become 

j 
3’ 
-$P+P+ -$v+v++M, (28) 

where the plasma tid field quantities are normalized as 
before. To zeroth order in pi/L, it is possible to neglect the 
divergence of the plasma momentum and energy fluxes. 
However, the Maxwell stress tensor and the Poynting flux 
both contain terms of order c’/Vi times B/B0 so that the 
divergence of the field momentum and energy fluxes can- 
not be neglected. Thus, to zeroth order in pi/L, Eqs. (28) 
and (29) become 

&(P+PY)= FV*M, 

_ -&w+w+-;v.s. 

(30) 

a .- 
znj==--f V-nj(t==O)v/. (25) It is interesting to note that, in the presence of a strong 

background magnetic field, electromagnetic radiation car- 
Thus the plasma density perturbation is of order (p/L) ries away a much larger fraction of the plasma momentum 
times the initial plasma density. The method of analysis for density than energy density. This effect is depicted in Fig. 
solving these equations is discussed below. 2. While the electromagnetic radiation launched along the 

background field by the plasma has an energy density pro- 

C. Total momentum and energy conservation 

Having assumed a collisionless plasma, that the inter- 
action of the jetting plasma with any existing background 

portional .to E,x By, the y-momentum density is propor- 
tional to E,X B,. Given that B. is large compared to By 
the relative proportion of momentum density carried -by 
the electromagnetic wave can be significantly larger than 
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FIG. 2. The radiation field (E,B) launched by a plasma slab moving 
across a uniform background magnetic field B, is depicted schematically. 
The wave propagates along the field with Poynting vector S as shown and 
carries pmomentum density proportional to 8,X B,,. The energy density 
carried by the wave is proportional to E,X 8, The reflected wave (&,B,) 
produced in the presence of a conducting boundary is shown propagating 
back toward the plasma cloud. This wave carries negative momentum 
which acts to slow the plasma cloud. 

the corresponding energy density. Figure 2 also illustrates 
what happens when a reflecting boundary is present. In the 
case of a perfectly conducting boundary, the reflected fields 
are equal in magnitude to the incident fields and twice the 
incident y momentum is given up to the reflecting medium 
while the reflected wave carries negativey momentum back 
to the plasma cloud causing it to slow. This effect can be 
important for both laboratory and space experiments and 
has been discussed previously in the context of low- 
frequency waves ( Alfvin-wing model) .5*6 

111. SOLUTION 

A. Ansatz 

Two factors enter into the development of an analyti- 
cal solution to Eqs. ( 17)-( 19). The first is associated with 
the large physical dimensions of the plasmas of interest 
relative to the short-wavelength electromagnetic waves 
that are launched during the early phases of evolution of 
the plasma. This consideration together with the fact that 
oscillating currents are set up primarily in a direction per- 
pendicular to the magnetic field leads us to seek a solution 
that allows for wave propagation predominantly along the 
magnetic field. In this limit, the plasma appears to be a 
large radiating dipole antenna oriented perpendicular to 
both the magnetic field and the direction of motion. The 
second factor pertains to the Fourier transform [Eq. (23)] 
of the currents. The Gaussian weighting term in the con- 
volution integrals suggests an expansion for the electric 

field components in terms of Hermite polynomials that 
form a complete orthogonal set over the interval k= - CO 
to 03 and satisfy the orthogonality relation 

I m dk H,(k)H,(k)e-*=2”?r1/2n!S,,, (32) 
--m 

where H,(k) is a Hermite polynomial of order n. Hermite 
polynomials, described in Abramowitz and Stegu8 (p. 
773 ), have increasing magnitude at large k with increasing 
order. Their limiting value for large k is given by 

1 H,(k) 1 < 1 .086ekz/22n”2, (331 

while the generating function for these polynomials is writ- 
ten 

with, for example, the results He(k) = 1 and Ht( k) =2k. 
These factors lead us to propose an ansatz for the elec- 

tric fields that includes an expansion in terms of a finite 
number N of Her-mite polynomials and that allows for 
wave propagation predominantly in the z direction. Fur- 
ther, we anticipate that our system of equations will define 
a finite number of wave modes that propagate in the z 
direction and that the eigenvalues for these modes will be 
related to the wave numbers in the z direction of the waves. 
The associated eigenvectors, in turn, will define the relative 
magnitude of the Hermite polynomial terms for the given 
wave mode and for each coordinate component of the field. 
With these considerations and given that the total number 
of wave modes for a given order of approximation N is 
2N+2 (determined a posteriori), the ansatz for the fields 
can be written 

ii@= j. e-Pd’4Hn( y) &(s,z), (35) 

2N+ 1 
Q&z) = 2 e,(s,z) [a,(s,z)eiJikim’ dz” 

m=O 

+ b,(s,z)e-‘lik? dz”], (36) 

where k,” is the wave number (eigenvalue) of the mth 
normal mode and e, is the corresponding eigenvector, 
which, together with E, possesses the general form 
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em= 

and a, i 

(37) 
plasma clouds of interest are much larger than the vacuum 
wavelength or the dielectric wavelength of the radiation 
emitted at early times. This assumption is equivalent to 
that of geometrical optics24 and allows us to ignore terms 
that involve derivatives of the coefficients with respect to z 
relative to the time-derivative terms (e.g., 
d2a,/d~/a,~~/c2) and/or dielectric terms (e.g., 
d2am/d2/a,&). In addition, we dot (the dot product 
operation is defined in the Appendix) the resulting equa- 
tions with a Hermite polynomial of the order Z, invoking 
the orthogonality condition Eq. (32) whenever possible. 

m The net result is an equation of the form 
are unknown coefficients that depend, in 
z and that define the relative contribution (A~+Bk,+C) *a=$ (38) 

Pm i 

end general, on s 2 
of the mth mode to the amplitude of the fields. 

Because the Hermite polynomial is such that higher- 
order terms have increasing amplitude with increasing k, 
we anticipate that the expansion (35) will include addi- 
tional effects associated with smaller and smaller scale 

structures in the x direction as the order of the expansion 
increases. The accuracy of the results for a given order will 
therefore depend on the degree to which small-scale struc- 
tures are important and modeled to that order as the 
plasma cloud and radiation field evolve in time. ._ 

B. Green’s function solution 

We proceed by substituting the ansatz Eq; (35) into 
Eqs. (17)-(19) and assume that the dimension of the 

where A, B, and C are matrices whose elements, derived in 
the Appendix are functions of s and z, a is a vector com- 
posed of unknown Hermite polynomial coefficients, and S 
is a vector containing the source term that has also been 
dotted with Hl( kD/2). The matrices take on the form, 

A= 

A$ . * * AFN Ahy * 

AFO - * - A$& AZ * 

AY$ . . . A$,, A& - 

AY” . . 
No 

. AY” AY’ . 
NN NO 

AZ * * - Af$ c4f$ * 

AT, * * * &TN NO . A”Y 

. - A;$ Ag - 

. . 

. . 

. . 

- ’ AifN NO A= . 

* - A&, A% * 

. . 

. . 

. . AYY A,‘” . 
NN NO 

. - ArN AZ * 

. . 

. . 

* Ai?N 

. . AY” 
ON 

* * AgN 

- * AzN 

. * AgNl 

(39) 
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where we have adopted a notation for the matrix elements 
such that the left superscript refers to the X, y, or z equa- 
tions [i.e., Eqs. (17), (181, or (19), respectively], the right 
superscript refers to the x, y, or z component of the field on 
which the matrix is operating, the left subscript corre- 
sponds to the Ith Hermite polynomial with which the equa- 
tions were dotted, and the right superscript corresponds to 
the particular Her-mite polynomial component of the field. 
Any element of the matrix can be represented in index 
notation as A$?, where the superscripts given as Greek 
letters indicate the particular wave equation or coordinate 
as described above and the subscripts are taken to be Ar- 
abic letters and denote the order of the Hermite polyno- 
mial components of the fields or dotted into the equations. 
The vectors a and S both take on a form similar to the 
eigenvectors defined above; namely, 

a= 

s, 
4 

4 
4 

a’ N’ 

, (4) 

L4= 

where the vector components possess a notation similar to 
that of the matrix elements, the superscript referring to the 
particular field coordinate and the subscript representing 
the Hermite polynomial component. The vector in index 
notation is written u$ Equation ( 38) represents an inter- 
mediate step to finding a Green’s function solution to Eqs. 
( 17)-( 19). The homogeneous equations are found by set- 
ting the forcing terms in Eq. (38) to zero. Setting the 
determinant of the left-hand matrix to zero then yields the 
normal modes of the system (the k,“) while the homoge- 
neous equation with the appropriate eigenvalues substi- 
tuted in yields the corresponding eigenvectors (e,). 

To determine the Green’s function, we must find the 
response at position z and spatial frequency k of our system 
of equations to a disturbance initiated at z’ and k’ for each 
of the components of the forcing term, including the partic- 
ular equation that is being driven [Eqs. ( 17)-( 19)] and the 
particular order of the Her-mite polynomial that is driving 
the equation. Thus we search for Green’s function solu- 
tions to equations of the form 

with 
0 

0, 
1 1 

and where the matrix operators L are given by 

L*= I 
-2 0 0 

Q -2 O 0 0, 1 0 

4=[ -ikc? 0 0 0 0 0 -ik$ 0 0 ] * 

4m&,O( k,k’ ) 4rrq,.sXHO(k,k’) 0 

-4rrq,SHO(k,k’) 4m&pO(k,k’) 0 I , 

2 0 0 
0 $+c+k 0 

0 0 2+&z? 1 ’ 

L 0 0 47r~~~j Otkk’) 1 

(42) 

(43) 

(44) 

(451 

(46) 

where O( k,k’ ) equal to an integral operator given by 

O(k,k’) = &+‘2&‘8j- dk’ e-Wk’)2d/4e 
2Tr 

The Green’s function matrices have the form 

3r 
(47) 

ijy= i+ , I 1 (48) 
* 
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where the superscript y takes on the values x, y, or z cor- 
responding to the appropriate equation and @’ represents 
the natural response of our system of equations to an im- 
pulse at.k=k’ and z=z’ appearing in the y equation. 

Now we allow for the expansion of our solution in 
terms of Hermite polynomials and write the Green’s func- 
tion given above in a way that is similar to the ansatz 
developed for the electric field; namely, 

$y(s,k,z) = nio ee2$14Hn( y) @&,z), 

with 

(49) 

?.N+1 
C&(s,z) = C e,(s,z) [gL(s,z)eiJGkF dz” 

m=O 

+hY (s z)e-iS~k~ dP 
m 9 I, (50) 

where the coefficients gL and hL must be determined ulti- 
mately from continuity and jump conditions. Equation 
(49) is then substituted into Eq. (41) and the resulting 
equation dotted with a Hermite polynomial of order I to 
yield 

x [ 4m[gk(s,z)e’sikF dz” + h~(s,z)e-i~~k~ ““I] 

==Hl y &,i?$(z-z’), 
( 1 

(51) 

where we have used index notation for the matrices to 
simplify the result, A$, B$, and C$, are elements of the 
matrices obtained in the Appendix, and the index i repre- 
sents the particular Hermite polynomial component of the 
applied impulse. Because we have incorporated the eigen- 
values and eigenvectors into the expression [Eq. (15)], the 
Green’s function automatically satisfies Eq. ( 5 1) for z <z’ 
and z>z’; however, the coefficients are different in each 
case and will be designated gr:, h f for z> z’ and g?:, 
hc for z<z’. To solve for these coefficients, we require 
continuity of the Green’s function across z=z’ and that the 
jump conditions obtained by integrating Eq. (5 1) be satis- 
fied; namely, 

.+A?< (s z)e-iJ-;;k; d.” 
rm 1 ] =Hl ‘< 

( ) 
S,&. (52) 

In addition, causality requires that only waves propagating 
in the positive (negative) z direction be allowed for z> 
( < ) z’; so that hy,> -0 and gc =O. Realizing that, for the 
homogeneous equations, the z-component : coefficients of 
the Green’s function are given in terms of the x coefficients 
by the a=z equation in Eq. (51), we count 8(N+1)2 
unknown Green’s function coefficients. Similarly, the con- 
tinuity condition yields 4(N+ 1)’ unique equations while 
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the jump conditions also yield 4(N+ 1>2 equations. Thus 
we are left with 8 (N+ 1) ’ coefficients and 8 (N+ 1) 2 equa- 
tions from the- continuity and jump conditions combined. 

Given the normal modes and corresponding eigenvec- 
tors together with the continuity requirement and the jump 
conditions, it is possible to obtain the final form for the 
Green’s function. The general solution for the fields is then 
calculated by dotting the Green’s function with the’source 
term and integrating over k’ and z’. Thus the fields are 
given by Eq. (35) with 

ig,(s,z) = 5 x 2%1-4m:,(s,z) Jm 
i=O y m=O -co 

dk’ Hi 2 ("") 
_ 

(I‘ z 
X dz’ g?” (s k’ rm 2 3 z’)Sr(s z’) , 

--m 

-I- S O” dz’ hg (s,k’,z’)g(s,z’) , 
) 

(53) 
z 

where the Sy are the source term coefficients obtained in 
the Appendix. Note that we have derived the source terms 
after dividing our equations by VoB,/c so that the electric 
field is now normalized to this factor, 

Clearly, it is not possible to write a closed form solu- 
tion for the Green’s function without limiting the number 
of terms in the expansion in terms of Hermite polynomials. 
In the remainder of this paper, we derive the zeroth-order 
solution, which not only demonstrates the methodology for 
obtaining a general iVth-order result but also illustrates 
many of the very interesting aspects of wave generation 
and propagation in a two-dimensional plasma. 

C. Zersth-order solution 

The first step in obtaining the zeroth-order solution is 
to determine the normal modes and the corresponding 
eigenvectors. Given the results derived in the Appendix, 
we write the A, B, and C matrices of E!q. (38) to zeroth 
order as 

A=E, A; ;]+ ; i],’ L f 

-00 0 00 0 
B F 0 0 Bj$ 1 = I 0 0 -iVo4moZII , 

-00 0 00 0 

R. Roussel-Duprk and R. Ii. Miller. 

(54) ._~ 

(55) 
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C= 

= 

cg Cd o- 

cgj c.$& qg 

0 0 G. 

rw+m 
-a?2 su++p)+; -v, $ ( ) 4nnoq/ 

0 0 m+81)+2; 

(56) 

Setting the determinant of the single matrix given by the 
parentheses on the left-hand side of Eq, (38) to zero yields 
two eigenvalues to zeroth order; namely, 

&k:)2=- .w+P)+ 
( 

$) + Jgz, (57) 

&kf12=- .m+P)+ 
( 

g+Jgzi, (58) 

where /3 and 132 are functions of z given by 

(59) 

B =41nJ#?-2~2 
2 s * (60) 

s is the Laplace transform variable, D(d) is the l/e half- 
width of the plasma cloud in the x (z) direction, and or 
and ffn are the Pedersen and Hall conductivities, respec- 
tively, defined by Eqs. ( 13) and ( 14). The corresponding 
eigenvectors for these two modes are given by 

1 

a2 

e”= 2/P+ J(c4/D4, -s4p; ’ 
0 

(61) 

1 

(62) 

Note that, to zeroth order, the z component of the electric 
field is zero. This result will be discussed further below. 

The eigenvalues obtained above for the zeroth-order 
system of equations represent dispersion relations for right- 
hand circularly polarized waves [Eq. (57 )] and left-hand 
circularly polarized waves [Pq. (58)]. Plots of the corre- 
sponding index of refraction squared ( =c2e/02) for each 
mode as a function of frequency o, where we have substi- 
tuted io for the Laplace transform variable .s, are shown in 
Figs. 3(a)-3(f) for three positions along the z dimension 
of the cloud and for two cloud sizes in the x direction. In 

these figures, the index of refraction squared is normalized 
to a stated value and the log of this quantity is plotted 
along the ordinate. In addition, the sign of this quantity is 
preserved so that values that fall below zero correspond to 
evanescent, nonpropagating waves. For these particular 
plots, we have chosen w,&=O) = low, o,= lOOw,, and 
0=300 and 100 km. In the limit of very large plasma 
clouds (c/D(w,$, the dispersion relations take on the 
usual form expected for right-hand and left-hand circularly 
polarized waves in a cold plasma imbedded in a back- 
ground magnetic field (e.g., Krall and Trivelpiece25). At 
high frequencies, the left-hand and right-hand modes are 
both dispersive but become evanescent at frequencies be- 
low ol= (~~$2) ( ,,&%$$$ - 1) for the left-hand 
mode and w2 = (o,J2) ( ,/w + 1) for the right- 
hand mode, where Ok is the electron plasma frequency and 
o, is the electron cyclotron frequency. The electron and 
ion cyclotron resonances appear in the dispersion plots as 
do electron and ion cyclotron waves, whistler waves, and 
Alfven waves at low frequencies. As we move to higher z in 
the cloud, the plasma density decreases and we see o1 and 
w2 shift to lower frequencies. In addition, we lind that an 
evanescent cutoff is introduced at low frequencies in the 
vicinity of wCi as a result of the finite dimension of the 
radiating plasma antenna. This effect can be understood by 
first noting that the total wave number (J?=k2,+ /& can 
be found by letting D+ co in Eqs. (57) and (58) with the 
result 

kO=iE ~~~ (631 

k’=is &$$&. (64) 

The corresponding expressions for the k, components in 
the zeroth-order limit are then given by 

et= [ ($?+4/v2) - JIg5q2, 

k:=[ ($i-i$f12)+Jgi]1n. 

(65) 

(66) 

At certain frequencies, k, can equal and even exceed k 
resulting in a negative value for e and an evanescent elec- 
tromagnetic wave. In this regime, the antenna is simply not 
large enough to radiate at low frequencies. From the plots 
in Figs. 3(a)-3 (f) we see that the cutoff frequency in- 
creases with decreasing plasma density and decreasing 
plasma cloud size. In the limit of large 0, k, reduces to 
l/D for both modes and the antenna radiates as a smooth 
aperture at high frequencies with a divergence angle of 
order (tan 6D= k,/k,) 8 D&t/2rrD. This result is consis- 
tent with the approximation of geometrical optics and is 
depicted in Fig. 4. Thus, in terms of wave propagation, it is 
apparent that, for large-enough clouds, the zeroth Hermite 
polynomial term yields a solution in which the plasma ra- 
diates as a smooth aperture at high frequency and cuts off 
at low frequencies. Higher-order terms should, in general, 
include additional radiation effects resulting from any self- 
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FIG. 3. (a)-(f) The index of refraction squared (= 3&a*) for the two eigenmodes associated with the zeroth-order solution is plotted as a function 
of frequency o at three positions along the z dimension of the cloud and for two cloud dimensions in the x directton. In these figures, the mdex of 
refraction squared is normalized to a state value and the log of this quantity is plotted along the ordinate. In addition, the sign of this quantity is preserved 
so that values that fall below zero correspond to evanescent, nonpropagating waves. For these particular plots we have chosen oJz=O) = 100, 
o =loOo,,, and D=300 km [(a)-(c)] and 100 km [(e)-(f)]. In the limit of very large plasma clouds (c/D(oJ, the dispersion relations take on the 
us&l form expected for right-hand and left-hand.circularly polarized waves in a cold plasma imbedded in a background magnettc field. At high 
frequencies, the left-hand and right-hand modes are both dispersive but become evanescent at frequencies below ot{= 1/2w,,[( 1+4c@&) - 11) for the 
left-hand mode and CD*{ = 1/20,[( 1+40&/c&) + I]) for the right-hand mode. The electron and ion cyclotron resonances appear in the dispersion plots 
as do electron and ion cyclotron waves, whistler waves, and Alfven waves at low frequencies. As we move to higher z in the cloud, the plasma density 
decreases and we see ot and o2 shift to lower frequencies. In addition, an evanescent cutoff is introduced at low frequencies in the vicinity of wCi as a 
result of the tlnite dimension of the radiating plasma antenna. 

consistent roughness that might develop in the x direction. 
We note that, at low frequencies (o < wCe), the vacuum 
wavelength of the wave approaches and can even exceed 
the dimensions of the plasma. However, as seen in Figs. 
3 (a)-3 (f) , the dielectric constant is large compared to one 

throughout the low-frequency (w < w,) regime in the cen- 
tral part of the plasma (i.e., at sufficiently high densities). 
As a result, the dielectric wavelength is much smaller than 
the plasma dimensions and the assumptions of geometrical 
optics remain valid. As the plasma density decreases, the 
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8=X/ 2rD 

k, = t/D 

FIG. 4. In the limit of geometrical optics, the plasma radiates as a smooth 
aperture into a cone with angular divergence of 2e, where 6 is approxi- 
mately equal to W27rD for large clouds. In this figure, the plasma cloud 
is depicted as shaded contours that represent the Gaussian plasma density 
protile and is moving out of the page, The angular spread of the radiation 
field is shown schematically. 

dielectric wavelength approaches the vacuum wavelength 
and our solution starts to fail at low frequencies. The fail- 
ure of our solution in this regime is contained in the eigen- 
vectors, which are discussed in detail below. 

The eigenvectors also contain interesting information 
about the nature of the zeroth-order solution. First is the 
fact that the z component of the electric field is zero. If one 
considers the picture shown in Fig. 5, it is apparent that 

FIG. 5. The charge separation produced in the x direction by the Lorentz 
force results in a polarization field that closes on itselfwith a fringing field 
that has components in the z direction that are asymmetric as a function 
of x. As in Fig. 4, the plasma cloud is depicted as shaded contours that 
represent the Gaussian plasma density proiile and is moving out of the 
page. The fringing field associated with polarization of the plasma is 
shown schematically. 

the charge separation produced in the x direction by the 
Lorenz force results in a polarization field that closes on 
itself with a fringing field that has components in the z 
direction that are asymmetric as a function of x. Because 
the zeroth-order solution is defined in terms of even func- 
tions of k, the inverse Fourier transform is even in X, and 
therefore to this order the z electric field is zero. Second, it 
can be shown (numerically) that kE(s*) = -[k:(s)]* and 
e&+7 = - [cl(s)]*. These two conditions together guar- 
antee that our final solution will satisfy causality [written 
as E*(s*) =E (s)] but are also consistent with the fact that 
a negatively propagating right-hand polarization wave 
looks like a positively propagating left-hand polarization 
wave. Third, we find that the eigenvectors are functions of 
z. In order to be consistent with the approximation of geo- 
metrical optics, it is necessary that these coefficients vary 
slowly compared to the vacuum wavelength of waves gen- 
erated by the plasma. To examine the consistency of this 
approximation, we have plotted in Figs. 6( a)-6(f) the y 
component of the eigenvectors as a function of z for various 
frequencies. In all cases, we find that these coefficients are 
constant over a large part of the cloud but that the approx- 
imation begins to break down at the edge of the plasma, as 
noted previously. 

The zeroth-order Green’s function is derived based on 
the procedure outlined in Sec. III l3 with the result 

*( 
V/@  + &w=m ejJ;,k;, &,” 

4k; ,/c4/D’-s”& 
, (67) 

a2 c4,04- 
(68) 

where n takes on the values 0 and 1 and where the h 6: and 
@ ;,’ are identical to their corresponding g counterparts 
(with > replaced by < ) except for a minus sign in the 
exponential. The final solution for the normalized (to 
V&/c) electric field is then obtained from Eqs. (35) and 
(53) and is given by 

@(:(s~,z)=&~ 
U 

’ 
-0IJ 

dz’ -$q,ao(s,z~)&k~*d~’ 

+e*crt(s~‘)ei~;k~~~~” 

dz’ ;[ego(s,z’)e-i~;k> &” 

+e,a1(ss~)e-‘l;kf-~Z” I)’ 
where the coefficients a0 and a1 are defined as 

&3$+8(2/02+ jbv55$$ 
ao= 

4ikz, Jc4/o” - s4& ’ 

(691 

(70) 
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FIG. 6. They component of the two eigenvectors is plotted as a function of normalized distance z/d for three frequencies [;=2Ow, (a); o=w, (b); 
and 0=0.008750, (c)] and for the two cloud dimensions in the x direction [II=300 km (a)-(c) and D= 100 km (d)-(f)]. 

2&+p(2/02+ @ma3 
al= 

4ik1, ,/c4/o” x (71) 

and where we have performed the inverse Fourier trans- 
form in X. 

From Eq. (69)) it is apparent that the solution for the 
fields at position z and for a given frequency s is determined 
by computing the contribution that left-hand and right- 
hand polarization waves launched at each position z’ make 
to the amplitude at z and summing over all z’. The contri- 
bution of z of the waves generated at z’ is given by a local 
frequency- and positiondependent amplitude times the ex- 
ponential of the accumulated phase change of the wave 

between z and z’, in a way that is consistent with geomet- 
rical optics. The denominator inside the z’ integral has 
zeros at the electron and ion cyclotron frequencies and at 
frequencies where k, goes-to zero. These frequencies cor- 
respond to the natural modes of oscillation of the plasma. 
When k,is set equal to zero, the wave equations (17)~( 19) 
collapse to a set of equations that describe the Iocal forma- 
tion of a polarization field (driven by the Lorentz force) in 
the x direction and that include a coupling to an induction 
field in the y direction, permitted by the spatial ~variations 
in x leading to a dBJdx and by the presence of currents in 
they direction. Thus, by taking k, equal to zero, we define 
the local amplitude of the currents that are driven by the 
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Lorentz force and their natural modes of oscillation. 
Clearly, the dominant contribution to the integral comes 
from these modes and the solution is therefore character- 
ized by waves that are launched at the corresponding fre- 
quencies and that propagate through the plasma in a way 
consistent with geometrical optics, To obtain the time- 
dependent evolution of the plasma cloud it is necessary to 
perform the inverse Laplace transform of Eq. (69). The 
inverse transform has been calculated numerically for var- 
ious plasma parameters and the results are described in a 
companion publication. 

IV. SUMMARY 

The early-time ( < 100 ion gyroperiods) evolution of 
plasmas moving across a background magnetic field has 
been addressed with a two-dimensional model in which a 
plasma cloud is assumed to have formed instantaneously 
with a velocity Ve across a uniform background magnetic 
field and with a Gaussian density profile in the two dimen- 
sions perpendicular to the direction of motion. This model 
treats both the early-time dynamics associated with the 
formation of the polarization field and the generation and 
propagation of electromagnetic waves. Several approxima- 
tions are made in our description of the plasma dynamics 
and our treatment of the propagation of electromagnetic 
waves. First, the plasma is assumed to have a Maxwellian 
velocity distribution function and only the moments of the 
distribution function (density, mean velocity, and temper- 
ature) are evolved in time (by means of the fluid equa- 
tions). As a result, we do not include the effects of kinetic 
instabilities or resonant wave-particle interactions. Second, 
the plasma dimensions are assumed to be much larger than 
an ion gyroradius and we therefore ignore the additional 
current systems and corresponding electromagnetic radia- 
tion that arise in connection with momentum and energy 
transport processes driven by density, velocity, and tem- 
perature gradients. Third, the production rate of additional 
plasma and plasma momentum resulting, for example, 
from photoionization of neutrals that are moving across 
the magnetic field is assumed to be small compared to an 
ion gyrofrequency. This effect can therefore be neglected 
over time scales small compared to an ion gyroperiod, 
however, in treating the self-consistent evolution of the 
plasma and the radiation field over longer time scales it is 
important to include it. Fourth, the initial dimensions of 
the plasma are assumed to evolve in time in a way that is 
consistent with the neglect of pressure and velocity gradi- 
ents. In general, this effect can be omitted over short time 
scales, however, plasma dimensions are observed to change 
over longer time scales (e.g., in active experiments) and, as 
in the case of plasma production, this effect must be in- 
cluded in order to treat the self-consistent evolution of the 
plasma and the radiation field over the longer times of 
interest. Fifth, the plasma is assumed to be collisionless. 
Sixth, the effects of a background plasma are omitted. De- 
pending on its density relative to that of the plasma cloud, 
the background plasma can both neutralize the polariza- 
tion lield and affect the propagation of electromagnetic ra- 
diation launched by the cloud. It will be important to in- 

elude the background in future studies. Seventh, the 
dimensions of the plasma cloud are assumed to be large 
compared to the vacuum wavelength or dielectric wave- 
length of radiation launched during the early phases of 
evolution of the plasma. This approximation allows us to 
treat the propagation of electromagnetic radiation in the 
limit of geometrical optics. In addition, because the pri- 
mary source of radiation is the oscillating polarization field 
perpendicular to the magnetic field and because the plasma 
dimensions are large, the electromagnetic waves propagate 
primarily along the magnetic field. This fact allows for an 
expansion of the fields in terms of Hermite polynomials, 
which as the order of the expansion increases, incorporates 
additional effects associated with small and smaller-scale 
structures in the direction of the polarization field. 

With these approximations we were able to obtain an 
analytic solution to the two-dimensional, coupled fluid 
[Eqs. (7)-(9)] and Maxwell’s equations [Eq. (ZO)]. A 
Fourier transform taken in one spatial dimension and a 
Laplace transform in time yields a set of integrodifferential 
equations [Eqs. (17)-( 19) and Eq. (23)] for the electro- 
magnetic fields. These equations are then converted to a 
coupled set of second-order, ordinary differential equations 
by expanding the fields in terms of Hermite polynomials 
[see the ansatz Eqs. (35) and (46)] and making use of the 
orthogonality condition. The Green’s function technique is 
then used together with a specification of the initial condi- 
tions for the plasma and field quantities and their temporal 
derivatives over all space to find the final solution. While 
the procedure for obtaining the solution to any order in the 
Hermite polynomial expansion is provided, a general solu- 
tion cannot be written explicitly. Instead, the specific solu- 
tion for the zeroth-order term in the Hermite polynomial 
expansion is derived. In general, the results indicate that, 
to zeroth order, the plasma cloud behaves like a large di- 
pole antenna oriented in the direction of the polarization 
field which is set up by the initial cross-field motion of the 
electrons and ions and which oscillates at frequencies de- 
fined by the normal modes of the system; namely, where 
the z wave number (eigenvalue) vanishes. These frequen- 
cies are density dependent and are highest in the center of 
the plasma cloud. The high-frequency electromagnetic ra- 
diation emitted by the corresponding current systems prop- 
agate through the cloud, interacting with the intervening 
plasma, and eventually into vacuum. At low frequencies, 
the dipole antenna is too small to radiate, and this radia- 
tion becomes trapped inside the plasma. The magnitude of 
the radiation field and the amount of plasma momentum 
and energy carried away by and stored instantaneously in 
the fields depends on the relative magnitude of certain 
plasma parameters. These issues will be addressed in a 
companion paper where results for specific cloud parame- 
ters are presented and where scaling laws for the magni- 
tude of the fields and the slowing down of the plasma cloud 
are derived. 

The present analysis has direct application to the cross- 
field motion of plasmas in experiments where the back- 
ground plasma density is small compared to the cloud den- 
sity and where the cloud dynamic fl is small (e.g., 
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magnetospheric chemical releases). The general applica- 
tion to active experiments and to space and astrophysical 
plasmas, however, will necessitate the inclusion of addi- 
tional effects. First, the Hermite polynomial expansion will 
have to be taken to first order so that the z electric field can 
be determined. Second, the effects of a background plasma 
will have to be included. Third, plasma density and mo- 
mentum production (as obtained, for example, in active 
experiments) will have to be modeled in order to treat the 
late time evolution of the plasma and electromagnetic ra- 
diation self-consistency. Finally, expansion of the plasma 
dimensions with time (also obtained in active experiments) 
can also affect the self-consistent evolution of the plasma 
and radiation fields over long time scales. These issues will 
be addressed in future publications. 
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APPENDIX: DERIVATION OF MATRIX ELEMENTS 

Equation (38) was obtained by substituting the ansatz 
Eq. (35) into the electromagnetic wave equations, Eqs. 
(17)-( 19), and dotting the resulting equations with a Her- 
mite polynomial of order 1. The dot product referred to 
here and in the text between the Hermite polynomial and a 
given function \I, (k) is defined as 

HI-Y?(k)= 
s 

m dk H/(k)‘P(k)e-‘. t-41) 
-00 

In deriving the matrix elements for the matrices A; B, and 
C with the procedure outlined above, it is necessary to 
perform certain integrals over k; namely, 

I 

2Pc2 
Bg=-z=- 2’[27~+1)!~,1+,+~(1--1)!6,,1-11, 

dk Izx,( y)H[( y)e-‘s’4 

47P2 
‘7[2’f1(z+2)!S.J+2+ (21f 1)2’1!6,[ 

(A3) 

= I , (A4) 
0 l<n 

j-Tm dk k j-Im g e-(k-k’,2ti4H, 

x (~)H/( k,)e-k’2h4 

2 (I+ 111 
= 23 2” [ (I-n+Z)/2]! zaz-l 

0 I<n-1 1 

I 
2 

3 2n+l 
(Z-l)! 

+P [(Z--n-1)/2]!- Iii=+1 
0 Z<n+l I 

f (A5) 

where the results for these integrals were taken from Grad- 
shteyn and Ryzhik26 (pp. 837-839). With these results, the 
matrix elements are readily found to be 

2Tr”2 296 Ac=A’=7 - I,m (Aa 

AQ=A~~=A~~=A~~=A~=A~~=Af=O, (A7) 

(-48) ~ 

27Y2 
-jLj-- 47Tfzoe-~‘~z 

2an 

Bf;= 
-iv0 1’ [ (I--n)/2]! t 

0 1 <n,Z+n=odd 
(A9) 

@;=~g= BY;= B+ B;;= B+O, (A101 
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I 
2&2 - z296,l+q s4nnof?-~‘d22, 2nii e= D [ u-n)/2]! 

l>n,l+n=even 

0 l<n,l+n=odd I 
I 

-.&d2~H 2”1! 
I (I-n)/2]! 

E>n,Z+n=even 
, 

0 i<n,l+n=odd 

-l/dz~H 2”1! 
[Cl-n)/2]! 

l>n,l+n=even 

0 1 <n,l+n=odd 

i 

2rP 
+ iv, 0’ 47rq)e -?W& 2yE+ I)! 

[(I--n+1)/2]! bn-1 
0 0 I 

I 

2P”2 
+ iv0 --jy- 

4Tnoe-~/&g, 2”21(1- ’ )! 
[(Z-n- 1)/2]! Ia+1 , 

0 0 

(All) 

(A121 

(Al3) 

27P= - s4nng + D 
I 

-z/dzzp 2n’1! 
[ (I-n)/2]! 

I>n,l+n=even 

0 i<n,?+n=odd 

+ 
( 

27F2 
iv, 2 D 47rnoe -Zh$ 2y/+ l)! 

[(I--nS1)/2]! hn- l,I+n=odd 

0 0 

I 

2?T’12 2n21( I- l)! 
+ ~~o-jjr4”no@-Z~dz&i L(I--n-1),2l, l>n+f,l+n=odd 

1 
, 

0 0 
(Al41 

%= 
I 

22 2%-‘/Z 

-vo ( 1 47r?z@e-~‘d2x 

2Y! 2 7 ” (I-n)/2! I>n,l+n=even 
, 

0 i’<n,l+n=odd I 

c&$ s22’m&J+ 
2TP2 2c2 
-7-9[2’+*(1+2)!6 n,j+2+ (21+ 1)2’fi6,,+21(1- 1 )2’+2(z-2)!s,J,2] 

i 

27P 2n2? 

- S4mz~ --ZW~ I>n,l+n=even 

+ D ” [ (I-n)/2]! 

1 
, 

0 kn,ifn=odd 

(Al51 

(A161 

c$+$=q=o. (Al7) sgo (A201 

Similarly, the vector elements of the source term S dotted 
with HI become, 

ST= - 87r%oe-Z’d22pSio, (A181 

(At9) 

where we have obtained these results after division of our 
equations by V&/c so that the source terms presented 
here are normalized to this factor. 
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